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ABSTRACT
We present a new method for improving the efficiency of in-
formation extraction systems applied to biological literature,
using the correlation between structural and functional clas-
sifications of gene products. The method evaluates extracted
information by checking if gene products from a common
family match a common set of biological properties. To
evaluate the method, we implemented it in a case-study, where
the method annotated carbohydrate-active enzymes with func-
tional properties extracted from literature. Each carbohydrate-
active enzyme is assigned to one or more families of cat-
alytic and carbohydrate-binding modules according to its
modular structure. To compute the relatedness between func-
tional properties, we implemented a semantic similarity mea-
sure in GO, a biological ontology. The results present our
quantitative measure of the correlation between the mod-
ular structures and functional properties, showing that our
method is a viable approach for automatic validation of ex-
tracted biological information.

1. INTRODUCTION
Relevant facts discovered in molecular biology research, like
in other fields, have been mainly published in scientific jour-
nals throughout the last century [9]. Extracting knowledge
from this large amount of unstructured information is a painful
and hard task, even to an expert. The solution was to cre-
ate and maintain structured databases, such as GenBank and
SwissProt that collect and distribute biological information,
in particular biological sequences. These databases describe

properties of common biological entities, such as genes and
proteins. In the past few decades, the explosion of data has
caused the exponential growth of these databases [3], where
efforts to compensate the lack of annotation of many entries
(mostly genomic) are at the origin of the significant misan-
notations, underprediction and overprediction of properties
found today in biologic databases [5]. The integration of
literature-derived annotation to different sources of data cor-
rects and completes our knowledge about these biological
entities [16]. However, a substantial amount of knowledge
important to the integration is still only recorded in liter-
ature [18], which motivates the development of automatic
tools that could extract part of this knowledge.

Information extraction methods find relevant information in
unstructured texts and encode it in a structured form, like a
database [11]. The application of these methods to biolog-
ical literature is a recent research topic with a high activity
despite its youth [2, 8, 17]. However, the use of different
nomenclatures, different data classifications, and misanno-
tations are hard barriers to overtake.

Our work aims to enhance information extraction systems
for automatic annotation of biological databases through a
new method, which we named CAC (Correlate the Anno-
tations’ Components). It evaluates whether an annotation
is valid or not, based on the biological correlation between
structure and function of gene products [14]. To check the
effectiveness of CAC, we implemented it in case-study, where
CAC annotated carbohydrate-active enzymes with functional
properties extracted from literature. From these annotations,
we identified a correlation between biological structure and
function by using a semantic similarity measure [10].

The rest of this paper is structured as follows. Section 2 de-
scribes CAC method in detail. In Section 3 we present our
case-study, describing its sources of biological information,
the validation process, and the results. Section 4 discusses
related work. Finally in Section 5 we express our main con-



clusions and directions for future work.

2. CAC
In CAC, we restrict an annotation to a pair composed by a
gene product and a biological property. The gene products
have to be classified in families according to their structural
information, and the biological properties have to be orga-
nized in an ontology structured as a graph. CAC aims to
validate an annotation only when its components have a bi-
ological relationship between them.

We define that two annotations converge if they relate dif-
ferent gene products from a common family with similar
biological properties. CAC assumes that an annotation is
valid if it has a significant number of convergent annotations
in any of its gene product’s families. This assumption is
supported by the dogma of molecular biology, which postu-
lates that sequences should be correlated with their biologi-
cal activity, i.e. gene products from a common family usu-
ally share a common set of biological properties. To validate
an annotation in a family, it is not necessary to have all gene
products from the family sharing the biological property, but
only a significant subset of them.

Similarity of gene products and biological properties are fuzzy
concepts, but we can still define metrics to estimate them. In
our case, we need to define two type of metrics:

� Given two gene products g1 and g2 from a common
family, we express their structural distance as ∆ � g1 � g2 � .

� Given two biological properties p1 and p2, we express
their functional distance as ∆ � p1 � p2 � .

Since it is only necessary to calculate the structural distance
between gene products from a common family, we should
calculate the structural distance according to factors that char-
acterize the family. For instance, we can measure the se-
quence similarity of common modules using BLAST (Ba-
sic Local Alignment Search Tool) [1]. Functional distance
between biological properties can be measured through se-
mantic similarity measures, which details are described in
section 2.1

We define a measure of the convergence between two anno-
tations as being proportional to its structural distance and in-
versely proportional to its functional distance. Without loss
of generality, we consider a set of annotations A f whose
gene products belong to a common family f .

Definition 1. Given two annotations � g1 � p1 ��� A f and � g2 � p2 ��� A f ,

their annotation convergence is defined as:

Γ ��� g1 � p1 ��� � g2 � p2 �	��
 ∆ � g1 � g2 �
∆ � p1 � p2 �

We can visualize the notion of annotation convergence by
representing an annotation as an arrow from a gene prod-
uct to a biological property. If two arrows start from distant
locations and finish in close locations, then they are conver-
gent. In other words, two annotations are convergent if their
structural distance is larger than their functional distance.

EXAMPLE 1. Figure 1 presents three different cases for
the annotations a1 
 � g1 � p1 � , a2 
 � g2 � p2 � and
a3 
 � g3 � p3 � , whose components we placed on the shaded
regions according to their structural or functional distance.
In case (a) we have ∆ � g1 � g2 ��
 ∆ � g2 � g3 �
 ∆ � g1 � g3 ��� 2 and
∆ � p1 � p2 ��
 ∆ � p2 � p3 ��
 ∆ � p1 � p3 � , which makes Γ � a1 � a3 ���
Γ � a1 � a2 � . In case (b) we have ∆ � g1 � g2 ��
 ∆ � g2 � g3 ��
 ∆ � g1 � g3 �
and ∆ � p1 � p2 ��
 ∆ � p2 � p3 ��
 ∆ � p1 � p3 ��� 2, thus Γ � a1 � a2 ���
Γ � a1 � a3 � . Finally, in case (c) we have Γ � a1 � a2 ��
 0 and
Γ � a2 � a3 �

 ∞, since a1 and a2 annotate the same gene product (ori-
gin) whereas a2 and a3 annotate the same biological prop-
erty (destiny).

Since we defined the concept of annotation convergence by
two measures from different universes, it is not reasonable to
establish a coefficient from which we can consider the anno-
tations convergent. However, it is possible to define a more
flexible relation that considers two annotations convergent if
their annotation convergence is greater than a certain value.

Definition 2. Given two annotations a1 � A f and
a2 � A f , and a threshold h, they are h-convergent if Γ � a1 � a2 ���
h.

Finally, given a threshold h, we define the correlation degree
of an annotation as the number of h-convergent annotations
in a common family.

Definition 3. Given an annotation a0 � A f and a threshold
h, the correlation degree of a0 for h is defined as Dh � a0 ��

#
�
ax : ax � A f � Γ � a0 � ax ��� h � .

The method validates annotations that have a correlation de-
gree larger than a certain value in at least one family. This
value and the convergence threshold are parameters that sta-
tistical classification methods can adjust [26].
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Figure 1: Annotations examples

2.1 Semantic Similarity Measures
Semantic similarity measures compute distances between terms
structured in a hierarchical taxonomy. Two kinds of ap-
proaches are prevalent: information content (node based)
and conceptual distance (edge based). Information content
considers the similarity between two terms the amount of in-
formation they share, where a term contains less information
when it occurs very often. Conceptual distance is a more in-
tuitive approach. It identifies the shortest topologic distance
between two terms in the scheme taxonomy. Budanitsky et
al. experimentally compared five different proposed seman-
tic similarity measures in WordNet [10]. The comparison
shows that Jiang and Conrath’s semantic similarity measure
provides the best results overall [19]. This semantic similar-
ity measure is a hybrid approach, i.e. it combines informa-
tion content and conceptual distance with some parameters
that control the degree of each factor’s contribution.

To compute the functional distance between functional prop-
erties we propose to use Jiang and Conrath’s measure. How-
ever, to measure the distance between two functional prop-
erties, we must be able to compute the following factors:
their closest common ancestor; the shortest path between
each term and their common ancestor; and for each term in
these paths its information content, its depth and the number
of its direct descendents (i.e. local density).

The information content computation depends on the terms’
frequency. We have to compute the number of occurrences
of each term in the corpora. However, if a term occurs then
all its ancestor terms also occur. Thus, we have to propagate
the term occurrences throughout the hierarchy, reaching a
frequency for the root node equal to the sum of all the oc-
currences, as it does not represent any relevant information.

The conceptual distance is based on the node depth and den-
sity factors. The node depth factor relies on the argument
that similarity increases as we descend the hierarchy, since
the relations are based on increasingly finer details. The den-
sity factor relies on the argument that when the parent node
has several child nodes (high density) they tend to be more
similar.

3. CASE-STUDY
This section presents a case-study to evaluate if CAC method
is a viable approach. The case-study uses the following bio-
logical information sources:

� CAZy (Carbohydrate Active enZYmes) is a database
of carbohydrate-active enzymes identified and classi-
fied in various families by careful sequence and struc-
tural comparisons [13]. It describes the families of
structurally-related catalytic and carbohydrate bind-
ing modules (or functional domains) of enzymes that
degrade, modify, or create glycosidic bonds. It also
links the sequences to GenBank(GenPept) [6], Swis-
sProt [4] and PDB [7] entries. These databases are
repositories of gene and protein sequence and struc-
tural data used to characterize CAZy’s enzymes.

� GO (Gene Ontology) provides a structured controlled
vocabulary of gene and protein biological roles [12].
The three organizing principles of GO are molecu-
lar function, biological process and cellular compo-
nent. Rison et al. discuss the reasons for choosing
GO as the functional scheme in a survey about func-
tional classification schemes [23]. They describe GO
as “representative of the ‘next generation’ of func-
tional schemes”. Unlike other schemes, GO is not a
tree-like hierarchy, but a directed acyclic graph (DAG),
which permits a more complete and realistic annota-
tion.

CAZy and GO provide the structural and functional clas-
sification schemes, respectively, for our case-study. Thus,
CAZy enzymes and GO terms will assume the role of gene
products and biological properties, respectively, in our con-
cept of annotation.

PubMed is an online interface for the MEDLINE database
[20]. MEDLINE provides a vast collection of abstracts and
bibliographic information, which have been published in biomed-
ical journals. In this paper, we consider a document as a
bibliographic item whose citation is present in MEDLINE.



3.1 Validation
To assure that CAC method produces valuable results, we
need to identify a correlation between CAZy and GO clas-
sification schemes. Our strategy to identify this correlation
is to compare the probability of extracting similar terms in
a family with the probability of extracting similar terms in
general. We structured the validation process in three steps:

1. Retrieve a set of documents related to each enzyme
from available literature.

2. Extract annotations that associates each enzyme with
GO terms extracted from its related documents.

3. Compute the probability of similar terms inside a fam-
ily and in general.

Instead of extracting information from the entire available
corpora, we retrieve only documents somehow related to
each enzyme. CAZy links its enzymes to external databases
(GenBank, SwissProt and PDB) that contain bibliographic
references. We retrieve for each enzyme the documents cited
in its linked external database entries.

We extract the annotations based on the occurrences in text [18,
15, 25]. We assume that if a document mentions a GO term
then there is an underlying biological relation between the
enzymes related to the document and the GO term, i.e. we
annotated the enzymes with the GO term. This is a very
strong assumption and a source of misannotations. How-
ever, it satisfies our goal of evaluating CAC by using it to
filter misannotations.

The three organizing principles of GO represent three or-
thogonal ontologies, thus we did not mix annotations from
different organizing principles. We choose to start by ex-
tracting only molecular functional terms, given its greater
importance to CAZy.

We consider that two GO terms are similar if their functional
distance is smaller than a given threshold. We implemented
Jiang and Conrath’s semantic similarity measure in GO to
compute the functional distance. Given a specific term, we
can define its probability of similar terms in a set of terms
as the number of its similar terms over the total number of
terms.

Definition 4. Given a term t, a set of terms T , and a simi-
larity threshold k, we define the term’s probability of similar
terms in the set as:

Psim � t � T ��
 #
�
tx : tx � T � 0 � ∆ � t � tx � � k �

#T

We assign to each family the set of terms annotated with its
enzymes.

Definition 5. Considering the set of all extracted annota-
tions A , we define the set of all extracted terms as T 
 �

t :
� e � t ��� A � , and given a family f we define its set of terms as
T f 
 �

t : � e � t ��� A � e � f � .

We define the probability of extracting similar terms in a
particular family as the average of its term’s probability of
similar terms in the family.

Definition 6. Given a family f , we define the family’s
probability of extracting similar terms in it as Pin � f ��
 �

Psim � t � T f � � t � � : t � T f � .

We define the probability of extracting similar terms in a
family as the average of Pin � f � for all the families.

Definition 7. Given a set of families F , we define the prob-
ability of extracting similar terms in a family as Pin 
 �

Pin � f � : f � F � .

To provide a good source of comparison, we define the prob-
ability of extracting similar terms in general analogously to
Pin. The only difference is that for each family’s term we
identify its similar terms in all the extracted annotations.

Definition 8. Given a family f , we define the family’s
probability of extracting similar terms in general as Pall � f ��
�

Psim � t � T � � t � � : t � T f � .

Definition 9. Given a set of families F , we define the prob-
ability of extracting similar terms in general as Pall 
 �

Pall � f � : f � F � .

If Pin is significantly larger than Pall for a given similarity
threshold then there is a correlation between CAZy and GO
classification schemes, which is a strong argument to con-
clude that the annotations validated by CAC method have a
larger precision than all the extracted annotations.

EXAMPLE 2. Consider T 
 � t1 � t2 � t3 � with ∆ � ti � t j �

 i � j, T f 
 � t1 � t2 � for the family f , and k 
 4. Then we

have Pin � f ��
 �
Psim � t1 � � t2 � ��� Psim � t2 � � t1 � � � 
�

1 � 1 � 
 1, Pall � f ��
 � Psim � t1 � � t2 � t3 � ��� Psim � t2 � � t1 � t3 � � �

 � 1 � 1 � 2 � 
 3 � 4, and therefore Pin � f �� Pall � f � because ∆ � t2 � t3 ���
k.



bibliographic
references

distinct
documents

GenBank 22849 4575
SwissProt 8998 4006
PDB 3561 785
Total 6377

Table 1: Number of items retrieved
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Figure 2: Pin over Pall

3.2 Results
This section describes the results of our last analysis per-
formed on the January 2003 release of GO and CAZy databases.
Table 1 presents the number of bibliographic references re-
trieved and the number of documents cited by them. From
these documents, we extracted 13869 annotations. We com-
puted the probability of extracting similar terms for 90 fami-
lies of glycoside hydrolases (GHs), which are the best cu-
rated enzymes in CAZy. These families were associated
with 3748 documents, from which were extracted 343 dis-
tinct GO terms.

Figure 2 shows the ratio of Pin � Pall . We computed these
values for the similarity threshold that maximized the differ-
ence between Pin and Pall . The parameters α and β control
the degree of how much the node depth and density factors
contribute to semantic similarity computation. These con-
tributions become less significant when α approaches 0 and
β approaches 1. The values achieved show that the prob-
ability of extracting similar terms is significantly larger in-
side a family, as anticipated. The graph has a peak when
β ��� 0 � 1 � 0 � 2  , where Pin � Pall is larger than 12 for all α, ex-
cept for α 
 0. This means that the density of the DAG and
the depth of each node are important conceptual distance
factors to amplify the correlation.

The maximum value of Pin � Pall is obtained with α 
 1 � 0
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Figure 3: Pin against Pall

and β 
 0 � 1. Figure 3 uses this configuration to show Pin
against Pall for different similarity thresholds. As expected,
both probabilities are proportional to the similarity thresh-
old, since a larger similarity threshold implies also a larger
number of similar terms. The relevant fact in the graphic is
that Pin is always significantly larger than Pall , which shows
that enzymes with similar modular structure tend to be an-
notated with similar functional terms.

4. RELATED WORK
Different techniques for computing similarity measures be-
tween terms have been developed to address a variety of
problems. Early approaches were based only on counting
edge distances between terms [22]. These were later im-
proved by using the information content of each term, a clas-
sic Information Retrieval technique [24].

More recently, Lord et al. investigated an information con-
tent semantic similarity measure, and its application to an-
notations found in SwissProt [21] that also associate gene
products with GO terms. They present results showing that
semantic similarity is correlated with sequence similarity,
i.e. function is correlated with structure. Since we pro-
pose an effective information extraction tool for biological
literature, we evaluated the measure of this correlation with
annotations automatically extracted from free text, instead
of using human curated annotations. In our work, we re-
placed the sequence similarity by a modular structure clas-
sification, which is a more precise structural classification.
We also tested the application of a hybrid semantic similar-
ity measure, which integrates the information content with
other valuable factors.

5. CONCLUSIONS & FUTURE WORK
We presented CAC method, which improves the efficiency
of information extraction systems applied to biological lit-



erature. The method uses the correlation between structure
and function to increase the precision of automatically ex-
tracted annotations.

We automatically annotated carbohydrate-active enzymes with
functional terms extracted from literature. From the anno-
tations, we computed the probability of extracting similar
terms, which was significantly larger for enzymes from a
common family. This result shows a correlation between
modular structure and molecular function, which assures that
CAC method increases the precision of extracted annota-
tions, thus making it an effective tool for automatic infor-
mation extraction of biological literature.

We implemented a hybrid semantic similarity measure to
compute the similarity between GO terms, which shows that
this kind of measures is feasible in a biological setting. More-
over, our results show that the information content measure
improves its effectiveness when integrated with a conceptual
distance measure.

To present results where the annotations validated by CAC
have a larger precision than all the extracted annotations we
first need to curate the extracted annotations. Besides human
curation, we also intend to incorporate human curated anno-
tations recorded in different biological sources to accelerate
this procedure.
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